GREEDY

📌 문제 두 종류의 부등호 기호 ‘’가 k개 나열된 순서열 A가 있다. 우리는 이 부등호 기호 앞뒤에 서로 다른 한 자릿수 숫자를 넣어서 모든 부등호 관계를 만족시키려고 한다. 예를 들어, 제시된 부등호 순서열 A가 다음과 같다고 하자. A ⇒ 부등호 기호 앞뒤에 넣을 수 있는 숫자는 0부터 9까지의 정수이며 선택된 숫자는 모두 달라야 한다. 아래는 부등호 순서열 A를 만족시키는 한 예이다. 3 1 7 0 이 상황에서 부등호 기호를 제거한 뒤, 숫자를 모두 붙이면 하나의 수를 만들 수 있는데 이 수를 주어진 부등호 관계를 만족시키는 정수라고 한다. 그런데 주어진 부등호 관계를 만족하는 정수는 하나 이상 존재한다. 예를 ..
📌 문제 한 개의 회의실이 있는데 이를 사용하고자 하는 N개의 회의에 대하여 회의실 사용표를 만들려고 한다. 각 회의 I에 대해 시작시간과 끝나는 시간이 주어져 있고, 각 회의가 겹치지 않게 하면서 회의실을 사용할 수 있는 회의의 최대 개수를 찾아보자. 단, 회의는 한번 시작하면 중간에 중단될 수 없으며 한 회의가 끝나는 것과 동시에 다음 회의가 시작될 수 있다. 회의의 시작시간과 끝나는 시간이 같을 수도 있다. 이 경우에는 시작하자마자 끝나는 것으로 생각하면 된다. 📌 입력 첫째 줄에 회의의 수 N(1 ≤ N ≤ 100,000)이 주어진다. 둘째 줄부터 N+1 줄까지 각 회의의 정보가 주어지는데 이것은 공백을 사이에 두고 회의의 시작시간과 끝나는 시간이 주어진다. 시작 시간과 끝나는 시간은 231-1보..
📌 문제 서로 다른 N개의 자연수의 합이 S라고 한다. S를 알 때, 자연수 N의 최댓값은 얼마일까? 📌 입력 첫째 줄에 자연수 S(1 ≤ S ≤ 4,294,967,295)가 주어진다. 📌 출력 첫째 줄에 자연수 N의 최댓값을 출력한다. 📌 문제 풀이 👨‍🏫 접근 가장 많은 자연수의 개수로 S를 찾아야 한다. 그렇다면 각 자연수들의 차이가 가장 적어야 가장 많은 자연수의 합으로 S를 구할 수 있다. 이 문제를 풀기 전에 1부터 n까지의 합을 생각해보았다. n(n + 1) / 2 = k 예제가 200이어서 그 근사치를 구하기 위해 n = 19라고 했을 때 k = 190이다. 그리고 n = 20이라고 했을 때 k = 210이다. n이 19라면, 1~19의 합인데, 여기서 1~18까지 더하고 19가 아닌 29..
📌 문제 어떤 나라에 N개의 도시가 있다. 이 도시들은 일직선 도로 위에 있다. 편의상 일직선을 수평 방향으로 두자. 제일 왼쪽의 도시에서 제일 오른쪽의 도시로 자동차를 이용하여 이동하려고 한다. 인접한 두 도시 사이의 도로들은 서로 길이가 다를 수 있다. 도로 길이의 단위는 km를 사용한다. 처음 출발할 때 자동차에는 기름이 없어서 주유소에서 기름을 넣고 출발하여야 한다. 기름통의 크기는 무제한이어서 얼마든지 많은 기름을 넣을 수 있다. 도로를 이용하여 이동할 때 1km마다 1리터의 기름을 사용한다. 각 도시에는 단 하나의 주유소가 있으며, 도시 마다 주유소의 리터당 가격은 다를 수 있다. 가격의 단위는 원을 사용한다. 예를 들어, 이 나라에 다음 그림처럼 4개의 도시가 있다고 하자. 원 안에 있는 숫..
턴태
'GREEDY' 태그의 글 목록 (2 Page)